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AlMfrad-The°elassic variational theory for eigenvalue problems is extended so as to define the Euler
critical load of a unilaterally constrained beam. The Euler load is obtained by minimising a RayleiP
quotient on a convex subset of a Hilbert spIKe. The variational formulation also provides a method of
bounding tile buckling load by comparison.

1. INTRODUCTION

In this paper we shOW how the linear theory of elastic stability, in particular the extremum
properties of the critical load for a strncture can be extended almost word for word to problems
where, besides boundary conditions of classi<:al type, perturbed displacements are subject to
unilateral constraints.

A typical situation is that of the hinged beam, drawn in Fig. 1, under an axial compressive
load P. The beam in the stnlight position is simply supported on platforms like ce, DD', which
prevent transverse displacements of parts of the beam in one direction.

It is fairly obvious that the definition of critical state in this example is the immediate
extension of the notion of buckling in the linear theory: i.e. the minimum axial load permitting
non-trivial equilibrium configurations. The only dffi'erence is that now the admissible perturbed
configurations must obey the constraints imposed by ce' and DD'.

On the other band. it is not SO obvious that the critical load can be determined as the
minimum of a functional and that this minimum is effectively attained by an admissible
function. It is known that the variational formulation of buckling problems is an effective tool
for approximating or bounding the critical load. or simplY for establishing its properties by
comparison.

Many of the results of the classical variational formulation can be extended to treat buckling
under unilateral constraints.

It is possible to show that the critical load is tbe minimum of a quadratic functional on a
convex set of functions and that at least one minimizing function exists. These results are
simple consequences of the calculus of variations on convex sets, which is an extension of the
classical projection theorem in Hilbert space.

However, once tbe variational formulation of the buckling problem is understood, another
question not yet fuUy explored is the dependence of the critical load upon the data of the
problem and in particular upon the unilateral constraints. Results of this kind are well known in
classical variational problems (see e.g. Courant-Hilbert[IJ and Weinberger (2]), but the ex·
tension to variational problems with unilateral constraints is still incomplete[3]. These methods
can provide information in three ways: comparison of the critical load with that of the
corresponding problem without unilateral constraints; change of critical load under perturbation
of the constraints; and optimal position of the unilateral constraints to maximise the critical
load.

The variational formulation of elastic stability under constraints applies, of course. to
beams, plates [4] and three-dimensional bodies. Here. however, we shall consider only Eulerian
instability of the simple beam of Fig. 1. This simplifies the calculations without compromising
generality and permits us to eharacterise quantitatively how the solution depends on the .
constraints.

The interesting fact is that many comparison properties of the buckling load previously
accepted as conjectures can be now demonstrated as theorems.
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Fig. I.

2. THE MINIMUM PROBLEM

We consider a hinged beam of length 1 and constant flexural rigidity EJ, which, in its
fundamental straight configuration, is in contact with disjoint supports like ce, DD', .... If the
beam is loaded by a force P, buckling will occur when other equilibrium configurations, like that
shown dashed in Fig. 2, are possible.

In order to fit the problem into the correct framework, we introduce the Hilbert space
H 2(0, I), defined by closure with respect to the norm

of the set of functions u E ~"{O, I].
We next consider the forms

a(u, u) =' L' EJu,,2 dx, b(u, u) =' L' U'2 dx,

(2.1)

(2.2)

which are quadratic functionals with domain H 2(0, I).
In an analogous manner we can define the Hilbert space H1(0, I) and in particular the space

Hol(O,n, which is the closure of the class of functions ~o"'(O, I) with respect to the norm

We also define the subspace V=' H 2(0.l) nHol(O,l).

We now consider the unilateral constraints ce, DD', which, if a certain orientation for y is
chosen and [yo y'). [5, W] are the positions of their end points, impose restrictions of the type

l/?'O on [y,y'), u~O on [5,5']. (2.3)

It is easy to show that (2.3) defines a convex subset K of V. In fact, if u\ and U2 are two
functions satisfying (2.3) then u =' tUI +(1- t)U2 (0 ~ t ~ 1) also satisfies (2.3) and therefore
belongs to K.

After these preliminaries, we consider the ratio

P =' a(u, u)
b(u, U)'

(2.4)

which we call the Rayleigh quotient. The critical load Per is the minimum value of the
functional (2.4) for all functions u in the set K.

The essential point of the variational theory is to prove that the Rayleigh quotient has a
minimum and that this value is actually attained for an admissible function u. The existence of a

Fig. 2.
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minimum is a consequence of the foIlowing properties (see e.g. Weinberger[2]):
1. b(u, u) is a positive definite quadratic form.
2. [a(u, u)]/[b(u, u)] is bounded below for all vectors u in K.
3. b(u, u) is completely continuous with respect to a(u, u), Le. every sequence {ull } for

which a(un, un) is uniformly bounded contains a subsequence {unJ such that

Property 1 is an obvious consequence of definition (2.2) and the boundary conditions, which
exclude the functions u = const. Property 2 derives from the Wirtinger inequality (see, e.g.
Beckenbach and Bellman[SJ), which, combined/with the Schwarz inequality, gives

(2.5)

where f3 is a positive constant.
Finally, in order to prove that b(u, u) is completely continuous with respect to a(u, u), we

note that, for any two points XI and Xl in (0, I), we have

If X" X2 belong to an interval [a, a +s] contained in [0, I], and we take a double integral with
respect to XI and Xl over [a, a + $], we obtain

(2.6)

We IWW divide [0, I] into K intervals Ii (i = 1, ...,~) each of length $ = 11K. The inequality (2.6)
does not depend on the origin of coordinates, so (2.6) holds over each interval. Since v in (2.6)
is any function in K, we consider a uniformly bounded sequence {vn} such that a(vn• vn)~ c
independently of ". Then (2.6) holds over each Ii for the difference Vn - v"'. Summingfrom 1to K we
obtain

2s t (v~-v~fdX~2~(f (V~_V~)dx)2+S3 (I (v~-v~)idx, (2.7)Jo 1=1 Jl; Jo

i.e.

(2.8)

Since a(vll , vn)::s;; c, by the triangle inequality we have a(vn - Vm, Vn - vm)~4c. Consequently we
can choose K such that

On the other hand, by the Schwarz inequality we know that
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This means that the sequences of real numbers fr, v~ dx are uniformly bounded, and there exists
a subsequence (still denoted by v~) such that!l; v~dx converges to a limit aj (i == L ..., K). Thus, by
the Cauchy criterion, there exists an N such that for n. m > N

(2.9)

Then (2.8) becomes

which proves property (3).

Thus, there exists an element UI
K E K for which the Rayleigh quotient assumes its minimum

value. If K coincides with V, so that unilateral constraints are absent, the Rayleigh quotient
must be minimised on the entire subspace V and it is easy to prove that

. a(u, u) 1r
2EJmm-- ==---;;-,

uEV b(u, u) 1- (2.10)

and hence Pcr is the Euler load for a simply supported beam with constant flexural rigidity. The
minimum of the Layleigh quotient is also called an eigenvalue, and the (not necessarily unique)
minimizing element u t is said to be an eigenvector.

2.1 Remark
The Rayleigh ratio is a homogenous function of degree zero on u. Therefore its value does

not change when u is replaced by KU where K is any constant. Moreover, when K is defined
according to (2.3), if u is an admissible function of the minimum problem, then cu, with c :;;,: 0, is
also admissible. This means that K is a convex cone with vertex at the origin. Then if u is a
solution to the minimum problem so also is cu, with c ;;;. o.

3. COMPARISON PROPERTIES OF THE CRITICAL LOAD

The interest in using a comparison theorem for the critical load stems from the circumstance
that, while it is usually difficult to evaluate the minimum of the Rayleigh quotient for u E K,
there exist many ways of calculating or approximating the minimum for u E V.

More generally, suppose that we want to compare the critical load of a beam under certain
constraints with the critical load of the same beam in which some constraints are removed. In
the first case we must seek the minimum of the Rayleigh quotient on K, in the second case we
must minimize the Rayleigh quotient on a set K C K'. It is obvious that the first minimum is not
less than the second and we can thus state the following theorem:

Theorem 1. The critical load of a unilaterally constrained beam does not increase with the
removal of the unilateral constraints.

This theorem describes the dependence of the critical load on the set where the minimum is
sought. Another theorem characterises how the critical load depends on a(u, u) and b(u, u).
Suppose in fact that a(u, u) and b(u, u) are altered to a'(u, u):;;,: a(u, u) and b'(u, u),,;;; b(u, u). If

P ' . a'(u, u)
cr==mln-b,( )'

uEV U, U

then clearly P ~r :;;,: Per. This implies the following:

(3.1)

Theorem 2. Increasing a(u, u) and decreasing b(u, u) will not decrease the critical load.
The theorems above are simple extensions of a classical monOtomcity prmciplet for

eigenvalues and apply in general. We may now ask which further properties of the solutions

tThis monotonicity principle was first enunciated by Courant for linear eigenvalue problems.
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(3.2)A = min a(u, u)
K HeV b(u, ul'

derive from the particular form of the Rayleigh qUotient and the set K as specified in Remark
2.1.

In this case if we represent V as a plane, the convex cone K can be drawn as a plane sector
with vertex at the origin (Fig. 3). If we minimise the Rayleigh quotient on V (that is, neglecting
unilateral constraints) we are able to find at least one element UI E Vat which the minimum is
attained. Since also KU, with K a parameter, is a solution, the Rayleigh quotient has its minimum
along the entire straight line KUI' We denote by AI this minimum, which, as a consequence of
the assumptions on a(u, u) and b(u, u), is real and positive, so that the Euler load Pcr is exactly
Ah and UI the corresponding eigenfunction. For our purposes it is also useful to introduce the
hither eigenvalues and eigenvectors of the Rayleigh quotient defined recursively as fonows (see,
e.g. Weinberger[2])

with the conditions b(u, UI) = b(u, U2) = .•. = b(u, UIt-I) = O. If we now minimize the Rayleigh
quotient on K and denote by UI

K the corresponding solution, then CU1
K (c ~ 0) is also a

solution. Therefore the Rayleigh quotient has its minimum along the entire ray CUI
K (Fig. 3).

Let JL I =P f,. be this minimum.
The geometrical situation of Fig. 3 suggests how to compare JLlwith AI.
We may distinguish the two cases, when UI is and is not contained in K. It is dear that, if

UI E K, the minimum of the Rayleigh quotient on K coincides with the minimum on V, and
P:' = Pcr- In this case the unilateral constraints do not alter the Euler critical load. When UI is
exterior to X, then U IK lies on the boundary of K. In this case we may denote by

(3.3)

the angle that KUI forms with CUIK (Fig. 3).
The proof is by contradiction. Suppose in fact that U1

K is interior to K. Then the convex
combination

is still an element of K for t sufficiently small. But in this case it is easy to verify that

a(Ult, u,t) a(ui
K + Ul

t
- UI

K
, UI

K + Ui
t

- UI
K

) a(uIK, UIK )

P~T b(u/, UI') b(utK + UI' - U1K, ut" + Ult - UIK) b(UIK, UIK )

+ t2 [( K K) pKb( K K)] a(uI
K

, UI
K

) p K
b( ' ') a UI - UI ,UI - Ul - CT UI - UI ,UI - UI E; b( K K) - m (3.4)

Ut , Ul . Ul ,Ul

since, by Theorem 1, we know that

v

Fig. 3.
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Thus (3.4) would mean that UI
K is not a point of minimum for the Rayleigh quotient.

We have then proved
Theorem 3. If Ut belongs to K the critical load coincides with the Euler load~ if UI lies

outside K the (necessarily greater) critical load is attained on a ray of the boundary of K.
An example of the first type is given by the beam of Fig. 4(a) where the critical load is

clearly the Euler load (2.10) and any perturbation of UI is admissible. Figure 4(b) illustrates a
situation of the second kind, where the solution· U 1K cannot be arbitrarily perturbed without
affecting the conditions of admissibility.

Another useful comparison property can be derived from a knowledge of the higher
eigenvalues of the Rayleigh quotient defined by (3.2).

It may happen when u1 is exterior to K, that one of the higher eigenfunctions, for instance
Un, belongs to K, while Un -t is exterior to it. Since Un-I and Un are two relative minima of the
Rayleigh quotient satisfying the condition An - 1~ An. on using the technique of the proof of
Theorem 3 we obtain that

(3.5)

We may thus prove the following theorem:
Theorem 4. If Un is the first eigenfunction of the unconstrained problem compatible with the

unilateral constraints, then the critical load is bounded from below by A'n-I and from above by
An·

As an application of the theorem, we consider the beam of Fig. 5 with unilateral supports
offering reactions of alternate sign on three intervals of length 113. In this case, we easily see
that the first admissible eigenfunction is sin (lrr/l)z and consequently

3.1 Remark
Observe that, when UI K belongs to the boundary of K, the solution necessarily tc;uches the

constraints in some points.

~d.. _----U;---------------__%r~
~- ~~i&a +--
(0)

4. INFLUENCE OFTRE CONSTRAINTS

We have so far considered comparison properties of the critical load with the eigenvalues of
the corresponding unconstrained problem.

We wish now to investigate more closely how the critical load depends on the shape of K
and on its perturbations.

The first result of this kind is based on the fact that both a(u, u) and b(u, u) are quadratic
functionals on u and, consequently, the Rayleigh quotient does not change if u is replaced by
-u.
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Thus, if UtK is a solution of the minimum problem under certain constraints. -UI
K is not in

general admissible (see Section 2.1). However, -UI
K becomes admissible if the unilateral

constraints are symmetricaUy reversed with respect to the axis of the beam. This proves
Theorem 5. The critical load does not change after symmetrical reversal of the unilateral

constraints.
For instance the critical load of the beam in Fig. 6 does not change if the unilateral supports

a and b are replaced by a' and b'.
A further consequence of Theorem 3 is that the solution is partially indifferent to the

variations of K.t Two situations occur. When Ut is interior to K, and therefore u. K = u" the
minimum of the Rayleigh quotient is attained in the interior of K and coincides with the
absolute minimum on V. It follows that we can arbitrarily alter K, without changing the
solution, provided that K continues to contain UI' When UI is exterior or lies on the boundary
of K the minimum of the Rayleigh quotient is attained along one of the generators of K. We
can thus alter the remaining part of K without changing the· solution, provided that the ray
containing UI

K remains the point of minimum for the Rayleigh quotient (2.4). This result can be
summarized by the following:

Theorem 6. Once Ut
K is known, the solution is indifferent to those perturbations of K

preserving the character of a minimum for UI
K

•

The practical consequences of Theorem 6 can be illustrated by the following examples. In
the beam of Fig. 7(a) the unilateral support a can be arbitrarily translated without modifying the
critical load (which is the Euler load). In the beam of Fig. 7(b) the buckled configuration UI

K

does not change if one adds another support c in the region where the displacement is directed
downwards.

Theorem 4 can be also used to solve problems of optimum design. Suppose that a certain
number of unilateral constraints are given, of which the dimensions are prescribed, but not the
positions along the span of the beam. We may ask what disposition of the constraints minimizes
the critical load. A shift of the supports causes a perturbation of K, and we wish to find the
shape of K, compatible with the dimensions of the constraints, that maximizes the Rayleigh
quotient.

A criterion of optimal disposition of a given set of constraints is made precise by
Theorem 7. If, by changing the position of the unilateral constraints, K is never empty, the

perturbation of K which maximizes the critical load is that excluding the highest possible
number of eigenfunctions {un} in increasing order.

Proof. The proof is a simple consequence of two properties, the monotone ordering of the
eigenvalues of the Rayleigh quotient and the completeness of the system {Un}. Since K is not
empty and {uII } is complete, some linear combinations of UII must necessarily belong to K. Since
the eigenvalues corresponding to {uII } are not decreasing with n, the best perturbation of K is
that excluding u" U2 ••••• as far as the eigenfunction of highest order allowed.

The following example clarifies the situation. If K consists of two unilateral point supports
a, b (Fig. 8), we may ask what is the position of a, b maximizing the critical load, By virtue of
Theorem 4 it is clear that

(4.1)

o b'

p

Fig. 6.

tThis property was exploited by Mancillo and Stampacchia[6].
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(5.1)

In fact, if a and b lie on the same part of the geometrical axis, U\ = sin (7TZ)/l is admissible and
P:; is AI, the Euler load. If a and b are placed on opposite sides of the geometrical axis the
critical load satisfies (4.1). When a and b are placed at the mid point, P~ is A2, and reaches its
maximum value.

a

~ :c;::~'-'

~--~SZ'----)-~~~---2S---;&~
::-;: ;~:~~' ~ ~

b
Fig. 8.

5. THE SIMPLE BEAM ON POINT SUPPORTS

We have so far derived certain comparison properties of the critical load which apply, not
only to simple beams, but to more complex elastic structures. However, for a simple beam with
unilateral point supports we may obtain further properties of the critical load and the buckled
configuration. In some cases we are even able to find the exact solution.

Let us consider, for simplicity, a beam of constant flexural rigidity EJ = 1, length I = 7T, with
hinged ends and two unilateral point supports at distances a\7T and 0!27T (0 < O!j < 1/2, 1/2 < 0!2 <
I) from one end (Fig. 9). Under the action of the axial load P the possible buckled states are
those minimizing the Rayleigh quotient

('II' U,,2 dz
a(u, u) Jo
b(u, u) = =-:!0"="'-U-'2-

d
-
Z
'

among all functions u(z) with piecewise continuous second derivatives such that u(O) = U(7T) =
oand moreover u(a\7T)";;; 0, u(a27T):;;' O. These two last inequalities define the convex set K in
our problem.

According to the properties of Theorem 3, we know that, if the absolute minimum of (5.1) is
not interior to K, it falls on the boundary of K, which implies that the solution must vanish at
least at one of the points 0!17T, 0!27T. Since these points are finite in number, it is clear that the
solution must be sought among three possible schemes: a continuous beam with two inter
mediate supports at 0!17T and 0!27T [Fig. 9(a)]; a continuous beam with one intermediate support
at 0!,7T or 0!27T [Fig. 9(b) and (c)]. The system (a), however, gives a critical load necessarily not
less than (b) and (c), because it imposes two zeros on the admissible functions instead of one. It
foUows that the critical load is the minimum between the critical loads of two continuous beams
with one intermediate support at 0!\7T or 0!27T. But the critical load of a beam on three supports
with the central support at distance 0!17T or (1- 0!2)7T from the closest end is

(5.2)

where K is a computable factor.t Thus the critical load is

(5.3)

Fig. 9.

tThe factor K is the lowest zero of a trascendental equation called Berry's equation (see Timoshenko and Gere[7]).
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It is interesting to observe that, though the critical load P:'r is unique, the minimising solution is
not necessarily unique. For instance, if a\ = (1- a2) there are at least two buckled states, (b)
and (c), admitting the same critical load.

This argument can of course, be used to evaluate the critical load of a beam on an arbitrary
number of unilateral point supports.

In general, the true critical load is attained for that equilibrium configuration which excludes
the maximum number of intermediate supports.

5.1. Example. If in the beam of Fig. 9 we take a, =(1- a2) =1/31T, the critical load is given by
(Section 2.5, [7])

K 14.9
Per = (2/31Tf - 3.40.

On the other hand, if we consider the admissible function v = sin 2z, the corresponding value of
the Rayleigh quotient is

( )
42 (" sin2 2z dz

a v,v = Jo =4
b(v v) (" ,

• 4Jo cos2 2z dz

and this upper bound for P:'r agrees with Theorem 4.
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